{ "id": "2407.02755", "version": "v1", "published": "2024-07-03T02:14:49.000Z", "updated": "2024-07-03T02:14:49.000Z", "title": "A generalization of a Theorem of A. Rogers", "authors": [ "Efren Morales-Amaya" ], "categories": [ "math.MG" ], "abstract": "Generalizing a Theorem due to A. Rogers \\cite{ro1}, we are going to prove that if for a pair of convex bodies $K_{1},K_{2}\\subset \\Rn$, $n\\geq 3$, there exists a hyperplane $H$ and a pair of different points $p_1$ and $p_2$ in $\\Rn \\backslash H$ such that for each $(n-2)$-plane $M\\subset H$, there exists a \\textit{mirror} which maps the hypersection of $K_1$ defined by $\\aff\\{ p_1,M\\}$ onto the hypersection of $K_2$ defined by $\\aff\\{ p_2,M\\}$, then there exists a \\textit{mirror} which maps $K_1$ onto $K_2$.", "revisions": [ { "version": "v1", "updated": "2024-07-03T02:14:49.000Z" } ], "analyses": { "keywords": [ "generalization", "convex bodies", "hypersection" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }