{ "id": "2407.02535", "version": "v1", "published": "2024-07-01T19:02:48.000Z", "updated": "2024-07-01T19:02:48.000Z", "title": "Eccentricity and algebraic connectivity of graphs", "authors": [ "B. Afshari", "M. Afshari" ], "categories": [ "math.CO" ], "abstract": "Let $G$ be a graph on $n$ nodes with algebraic connectivity $\\lambda_{2}$. The eccentricity of a node is defined as the length of a longest shortest path starting at that node. If $s_\\ell$ denotes the number of nodes of eccentricity at most $\\ell$, then for $\\ell \\ge 2$, $$\\lambda_{2} \\ge \\frac{ 4 \\, s_\\ell }{ (\\ell-2+\\frac{4}{n}) \\, n^2 }.$$ As a corollary, if $d$ denotes the diameter of $G$, then $$\\lambda_{2} \\ge \\frac{ 4 }{ (d-2+\\frac{4}{n}) \\, n }.$$ It is also shown that $$\\lambda_{2} \\ge \\frac{ s_\\ell }{ 1+ \\ell \\left(e(G^{\\ell})-m\\right) },$$ where $m$ and $e(G^\\ell)$ denote the number of edges in $G$ and in the $\\ell$-th power of $ G $, respectively.", "revisions": [ { "version": "v1", "updated": "2024-07-01T19:02:48.000Z" } ], "analyses": { "subjects": [ "05C50", "15A18" ], "keywords": [ "algebraic connectivity", "eccentricity", "longest shortest path starting", "th power" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }