{ "id": "2407.01766", "version": "v1", "published": "2024-07-01T19:58:15.000Z", "updated": "2024-07-01T19:58:15.000Z", "title": "Irreducible smooth representations in defining characteristic without central character", "authors": [ "Daniel Le" ], "comment": "5 pages", "categories": [ "math.RT", "math.NT" ], "abstract": "Let $p>3$ and $F$ be a non-archimedean local field with residue field a proper finite extension of $\\mathbb{F}_p$. Let $E$ be an algebraically closed countable field extension of the residue field of $F$. In this short note, we explain how the methods from arXiv:1809.10247 and arXiv:2210.07281 can be used to construct irreducible smooth representations of $\\mathrm{GL}_n(F)$, $n>1$, over $E$ without a central character.", "revisions": [ { "version": "v1", "updated": "2024-07-01T19:58:15.000Z" } ], "analyses": { "subjects": [ "22E50" ], "keywords": [ "central character", "defining characteristic", "closed countable field extension", "residue field", "non-archimedean local field" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }