{ "id": "2407.01729", "version": "v1", "published": "2024-07-01T19:03:00.000Z", "updated": "2024-07-01T19:03:00.000Z", "title": "Deformations of curves with constant curvature", "authors": [ "Mohammad Ghomi", "Matteo Raffaelli" ], "comment": "14 pages, 2 figures", "categories": [ "math.DG", "math.GT" ], "abstract": "We prove that curves of constant curvature satisfy the parametric $C^1$-dense relative $h$-principle in the space of immersed curves with nonvanishing curvature in Euclidean space $R^{n\\geq 3}$. It follows that two knots of constant curvature in $R^3$ are isotopic, resp. homotopic, through curves of constant curvature if and only if they are isotopic, resp. homotopic, and their self-linking numbers, resp. self-linking numbers mod $2$, are equal.", "revisions": [ { "version": "v1", "updated": "2024-07-01T19:03:00.000Z" } ], "analyses": { "subjects": [ "53A04", "57K10", "58C35", "53C21" ], "keywords": [ "deformations", "constant curvature satisfy", "self-linking numbers mod", "euclidean space", "immersed curves" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }