{ "id": "2407.01584", "version": "v1", "published": "2024-06-18T12:21:28.000Z", "updated": "2024-06-18T12:21:28.000Z", "title": "The mapping properties of fractional derivatives in weighted fractional Sobolev space", "authors": [ "Cailing Li" ], "categories": [ "math.CA", "math.AP", "math.PR" ], "abstract": "We study the mapping behavior of the Marchaud fractional derivative with different extensions in the scale of fractional weighted Sobolev spaces. In particular we show that the $\\alpha$--order Riemann--Liouville fractional derivative maps $W^{p,s}_0(\\Omega)$ to $W^{p,s-\\alpha}(\\Omega)$, for all $0<\\alpha