{ "id": "2407.01237", "version": "v1", "published": "2024-07-01T12:27:35.000Z", "updated": "2024-07-01T12:27:35.000Z", "title": "A note on the maximization of the first Dirichlet eigenvalue for perforated planar domains", "authors": [ "Manuel Dias" ], "comment": "27 pages, 7 figures. Comments are welcomed", "categories": [ "math.AP", "math.OC", "math.SP" ], "abstract": "In this work we prove that given an open bounded set $\\Omega \\subset \\mathbb{R}^2$ with a $C^2$ boundary, there exists $\\epsilon := \\epsilon(\\Omega)$ small enough such that for all $0 < \\delta < \\epsilon$ the maximum of $\\{\\lambda_1(\\Omega - B_{\\delta}(x)):B_{\\delta} \\subset \\Omega\\}$ is never attained when the ball is close enough to the boundary. In particular it is not obtained when $B_\\delta(x)$ is touching the boundary $\\partial \\Omega$.", "revisions": [ { "version": "v1", "updated": "2024-07-01T12:27:35.000Z" } ], "analyses": { "subjects": [ "35J25", "49R05", "49Q10", "35B65", "47J10" ], "keywords": [ "first dirichlet eigenvalue", "perforated planar domains", "maximization", "open bounded set" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }