{ "id": "2407.01227", "version": "v1", "published": "2024-07-01T12:18:50.000Z", "updated": "2024-07-01T12:18:50.000Z", "title": "Non-intersecting Paths and the Determinant of the Distance Matrix of a Tree", "authors": [ "Emmanuel Briand", "Luis Esquivias-Quintero", "Álvaro Gutiérrez", "Adrián Lillo", "Mercedes Rosas" ], "categories": [ "math.CO" ], "abstract": "We present the first combinatorial proof of the Graham-Pollak Formula for the determinant of the distance matrix of a tree, via sign-reversing involutions and the Lindstr\\\"om-Gessel-Viennot Lemma. Our approach provides a cohesive and unified framework for the understanding of the existing generalizations and $q$-analogues of the Graham-Pollak Formula, and facilitates the derivation of a natural simultaneous generalizations for them.", "revisions": [ { "version": "v1", "updated": "2024-07-01T12:18:50.000Z" } ], "analyses": { "subjects": [ "05C05", "05A19", "05A15" ], "keywords": [ "distance matrix", "non-intersecting paths", "determinant", "graham-pollak formula", "first combinatorial proof" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }