{ "id": "2407.00872", "version": "v1", "published": "2024-07-01T00:45:09.000Z", "updated": "2024-07-01T00:45:09.000Z", "title": "Lower Bounds for Multicolor Star-Critical Ramsey Numbers", "authors": [ "Mark Budden", "Yash Shamsundar Khobragade", "Siddhartha Sarkar" ], "comment": "18 pages, 6 figures", "categories": [ "math.CO" ], "abstract": "The star-critical Ramsey number is a refinement of the concept of a Ramsey number. In this paper, we give equivalent criteria for which the star-critical Ramsey number vanishes. Next, we provide a new general lower bound for multicolor star-critical Ramsey numbers whenever it does not vanish. As an application, we evaluate $r_*(P_k, P_3, P_3)$, where $P_n$ is a path of order $n$. In the process of proving these results, we also show that $r_*(C_5, P_3)=3$, where $C_5$ is a cycle of order $5$.", "revisions": [ { "version": "v1", "updated": "2024-07-01T00:45:09.000Z" } ], "analyses": { "subjects": [ "05C55", "05D10" ], "keywords": [ "multicolor star-critical ramsey numbers", "general lower bound", "star-critical ramsey number vanishes", "equivalent criteria", "refinement" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }