{ "id": "2406.18982", "version": "v1", "published": "2024-06-27T08:25:13.000Z", "updated": "2024-06-27T08:25:13.000Z", "title": "Singular $p$-biharmonic problem with the Hardy potential", "authors": [ "A. Drissi", "A. Ghanmi", "D. D. Repovš" ], "journal": "Nonlinear Anal. Model. Control 29 (2024), 21 pp", "doi": "10.15388/namc.2024.29.35410", "categories": [ "math.AP", "math.OC" ], "abstract": "The aim of this paper is to study existence results for a singular problem involving the $p$-biharmonic operator and the Hardy potential. More precisely, by combining monotonicity arguments with the variational method, the existence of solutions is established. By using the Nehari manifold method, the multiplicity of solutions is proved. An example is also given, to illustrate the importance of these results.", "revisions": [ { "version": "v1", "updated": "2024-06-27T08:25:13.000Z" } ], "analyses": { "subjects": [ "31B30", "35J35", "49J35" ], "keywords": [ "hardy potential", "biharmonic problem", "study existence results", "nehari manifold method", "biharmonic operator" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }