{ "id": "2406.17874", "version": "v1", "published": "2024-06-25T18:22:09.000Z", "updated": "2024-06-25T18:22:09.000Z", "title": "Central limits from generating functions", "authors": [ "Mitchell Lee" ], "comment": "6 pages", "categories": [ "math.PR" ], "abstract": "Let $(Y_n)_n$ be a sequence of $\\mathbb{R}^d$-valued random variables. Suppose that the generating function \\[f(x, z) = \\sum_{n = 0}^\\infty \\varphi_{Y_n}(x) z^n,\\] where $\\varphi_{Y_n}$ is the characteristic function of $Y_n$, extends to a function on a neighborhood of $\\{0\\} \\times \\{z : |z| \\leq 1\\} \\subset \\mathbb{R}^d \\times \\mathbb{C}$ which is meromorphic in $z$ and has no zeroes. We prove that if $1 / f(x, z)$ is twice differentiable, then there exists a constant $\\mu$ such that the distribution of $(Y_n - \\mu n) / \\sqrt{n}$ converges weakly to a normal distribution as $n \\to \\infty$. If $Y_n = X_1 + \\cdots + X_n$, where $(X_n)_n$ are i.i.d. random variables, then we recover the classical (Lindeberg$\\unicode{x2013}$L\\'evy) central limit theorem. We also prove the 2020 conjecture of Defant that if $\\pi_n \\in \\mathfrak{S}_n$ is a uniformly random permutation, then the distribution of $(\\operatorname{des} (s(\\pi_n)) + 1 - (3 - e) n) / \\sqrt{n}$ converges, as $n \\to \\infty$, to a normal distribution with variance $2 + 2e - e^2$.", "revisions": [ { "version": "v1", "updated": "2024-06-25T18:22:09.000Z" } ], "analyses": { "subjects": [ "60F05" ], "keywords": [ "generating function", "normal distribution", "central limit theorem", "characteristic function", "valued random variables" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }