{ "id": "2406.16365", "version": "v1", "published": "2024-06-24T07:16:24.000Z", "updated": "2024-06-24T07:16:24.000Z", "title": "On the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation with inverse-power potential", "authors": [ "JinMyong An", "JinMyong Kim", "OkByol Kim" ], "comment": "31 Pages", "categories": [ "math.AP" ], "abstract": "In this paper, we study the Cauchy problem for the inhomogeneous nonlinear Schr\\\"{o}dinger equation with inverse-power potential \\[iu_{t} +\\Delta u-c|x|^{-a}u=\\pm |x|^{-b} |u|^{\\sigma } u,\\;\\;(t,x)\\in \\mathbb R\\times\\mathbb R^{d},\\] where $d\\in \\mathbb N$, $c\\in \\mathbb R$, $a,b>0$ and $\\sigma>0$. First, we establish the local well-posedness in the fractional Sobolev spaces $H^s(\\mathbb R^d)$ with $s\\ge 0$ by using contraction mapping principle based on the Strichartz estimates in Sobolev-Lorentz spaces. Next, the global existence and blow-up of $H^1$-solution are investigated. Our results extend the known results in several directions.", "revisions": [ { "version": "v1", "updated": "2024-06-24T07:16:24.000Z" } ], "analyses": { "subjects": [ "35Q55", "35A01", "35B44" ], "keywords": [ "inhomogeneous nonlinear schrödinger equation", "cauchy problem", "inverse-power potential", "fractional sobolev spaces", "global existence" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }