{ "id": "2406.15822", "version": "v1", "published": "2024-06-22T11:43:05.000Z", "updated": "2024-06-22T11:43:05.000Z", "title": "On the Weisfeiler-Leman dimension of circulant graphs", "authors": [ "Yulai Wu", "Ilia Ponomarenko" ], "comment": "21 pages", "categories": [ "math.CO" ], "abstract": "A circulant graph is a Cayley graph of a finite cyclic group. The Weisfeiler-Leman-dimension of a circulant graph $X$ with respect to the class of all circulant graphs is the smallest positive integer~$m$ such that the $m$-dimensional Weisfeiler-Leman algorithm correctly tests the isomorphism between $X$ and any other circulant graph. It is proved that for a circulant graph of order $n$ this dimension is less than or equal to $\\Omega(n)+3$, where $\\Omega(n)$ is the number of prime divisors of~$n$.", "revisions": [ { "version": "v1", "updated": "2024-06-22T11:43:05.000Z" } ], "analyses": { "subjects": [ "05E30", "05C60", "05E18", "F.2.2" ], "keywords": [ "circulant graph", "weisfeiler-leman dimension", "dimensional weisfeiler-leman algorithm correctly tests", "finite cyclic group", "cayley graph" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }