{ "id": "2406.13729", "version": "v1", "published": "2024-06-19T17:48:50.000Z", "updated": "2024-06-19T17:48:50.000Z", "title": "On the Saito number of plane curves", "authors": [ "Yohann Genzmer", "Marcelo E. Hernandes" ], "categories": [ "math.AG", "math.CV" ], "abstract": "In this work we study the \\emph{Saito number} of a plane curve and we present a method to determine the minimal Saito number for plane curves in a given equisingularity class, that gives rise to an actual algorithm. In particular situations, we also provide various formulas for this number. In addition, if $\\nu_0$ and $\\nu_1$ are two coprime positive integers and $N>0$ then we show that for any $1\\leq k\\leq \\left [\\frac{N\\nu_0}{2}\\right ]$ there exits a plane curve equisingular to the curve $$y^{N\\nu_0}-x^{N\\nu_1}=0$$ such that its Saito number is precisely $k$.", "revisions": [ { "version": "v1", "updated": "2024-06-19T17:48:50.000Z" } ], "analyses": { "subjects": [ "14H20", "32S65", "14B05" ], "keywords": [ "minimal saito number", "plane curve equisingular", "equisingularity class", "actual algorithm", "coprime positive integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }