{ "id": "2406.13418", "version": "v1", "published": "2024-06-19T10:15:02.000Z", "updated": "2024-06-19T10:15:02.000Z", "title": "Filtrations of torsion classes in proper abelian subcategories", "authors": [ "Anders S. Kortegaard" ], "comment": "12 pages, comments are welcome", "categories": [ "math.RT" ], "abstract": "In an abelian category $\\mathscr{A}$, we can generate torsion pairs from tilting objects of projective dimension $\\leq 1$. However, when we look at tilting objects of projective dimension $2$, there is no longer a natural choice of an associated torsion pair. Instead of trying to generate a torsion pair, Jensen, Madsen and Su generated a triple of extension closed classes that can filter any objects of $\\mathscr{A}$. We generalize this result to proper abelian subcategories.", "revisions": [ { "version": "v1", "updated": "2024-06-19T10:15:02.000Z" } ], "analyses": { "subjects": [ "18E10", "18G80" ], "keywords": [ "proper abelian subcategories", "torsion classes", "filtrations", "generate torsion pairs", "tilting objects" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }