{ "id": "2406.13278", "version": "v1", "published": "2024-06-19T07:14:50.000Z", "updated": "2024-06-19T07:14:50.000Z", "title": "Mean Values of the auxiliary function", "authors": [ "Juan Arias de Reyna" ], "comment": "9 pages, 1 figure", "categories": [ "math.NT" ], "abstract": "Let $\\mathop{\\mathcal R}(s)$ be the function related to $\\zeta(s)$ found by Siegel in the papers of Riemann. In this paper we obtain the main terms of the mean values \\[\\frac{1}{T}\\int_0^T |\\mathop{\\mathcal R}(\\sigma+it)|^2\\Bigl(\\frac{t}{2\\pi}\\Bigr)^\\sigma\\,dt, \\quad\\text{and}\\quad \\frac{1}{T}\\int_0^T |\\mathop{\\mathcal R}(\\sigma+it)|^2\\,dt.\\] Giving complete proofs of some result of the paper of Siegel about the Riemann Nachlass. Siegel follows Riemann to obtain these mean values. We have followed a more standard path, and explain the difficulties we encountered in understanding Siegel's reasoning.", "revisions": [ { "version": "v1", "updated": "2024-06-19T07:14:50.000Z" } ], "analyses": { "subjects": [ "11M06", "30D99" ], "keywords": [ "mean values", "auxiliary function", "standard path", "main terms", "riemann nachlass" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }