{ "id": "2406.13013", "version": "v1", "published": "2024-06-18T19:10:05.000Z", "updated": "2024-06-18T19:10:05.000Z", "title": "An uniform lower bound for classical Kloosterman sums and an application", "authors": [ "Jewel Mahajan", "Jishu Das", "Stephan Baier" ], "comment": "11 pages", "categories": [ "math.NT" ], "abstract": "We present an elementary uniform lower bound for the classical Kloosterman sum $S(a,b;c)$ under the condition of its non-vanishing and $(ab,c)=1$, with $c$ being an odd integer. We then apply this lower bound for Kloosterman sums to derive an explicit lower bound in the Petersson's trace formula, subject to a pertinent condition. Consequently, we achieve a modified version of a theorem by Jung and Sardari, wherein the parameters $k$ and $N$ are permitted to vary independently.", "revisions": [ { "version": "v1", "updated": "2024-06-18T19:10:05.000Z" } ], "analyses": { "subjects": [ "11L05", "11L07", "11F72" ], "keywords": [ "classical kloosterman sum", "elementary uniform lower bound", "application", "peterssons trace formula", "explicit lower bound" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }