{ "id": "2406.12633", "version": "v1", "published": "2024-06-18T14:01:34.000Z", "updated": "2024-06-18T14:01:34.000Z", "title": "Solutions to a chemotaxis system with spatially heterogeneous diffusion sensitivity", "authors": [ "Gregor Flüchter" ], "categories": [ "math.AP" ], "abstract": "We consider a parabolic-elliptic Keller-Segel system with spatially dependent diffusion sensitivity \\begin{eqnarray*} \\left\\{ \\begin{array}{l} u_t = \\nabla \\cdot (|x|^\\beta \\nabla u) - \\nabla \\cdot (u\\nabla v), \\\\[1mm] 0 = \\Delta v - \\mu + u, \\qquad \\mu:=\\frac{1}{|\\Omega|} \\int\\limits_\\Omega u, \\end{array} \\right. \\qquad \\qquad (\\star) \\end{eqnarray*} under homogeneous Neumann boundary conditions in the ball $\\Omega=B_R(0)\\subset \\mathbb R^n$. For $\\beta>0$ and radially symmetric H\\\"older continuous initial data, we prove that there exists a pointwise classical solution to $(\\star)$ in $(\\Omega\\setminus \\{0\\})\\times (0,T)$ for some $T>0$. For radially decreasing initial data satisfying certain compatibility criteria, this solution is bounded and unique in $(\\Omega\\setminus \\{0\\})\\times (0,T^*)$ for some $T^*>0$. Moreover, for $n \\geq 2$ and sufficiently accumulated initial data, there exists no solution $(u,v)$ to $(\\star)$ in the sense specified above which is globally bounded in time.", "revisions": [ { "version": "v1", "updated": "2024-06-18T14:01:34.000Z" } ], "analyses": { "subjects": [ "35A01", "35K65", "35A02", "35B44", "35B33", "92C17" ], "keywords": [ "spatially heterogeneous diffusion sensitivity", "chemotaxis system", "decreasing initial data satisfying", "homogeneous neumann boundary conditions", "parabolic-elliptic keller-segel system" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }