{ "id": "2406.12040", "version": "v1", "published": "2024-06-17T19:19:50.000Z", "updated": "2024-06-17T19:19:50.000Z", "title": "Critical wetting in the (2+1)D Solid-On-Solid model", "authors": [ "Joseph Chen", "Reza Gheissari", "Eyal Lubetzky" ], "comment": "11 pages", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "In this note, we study the low temperature $(2+1)$D SOS interface above a hard floor with critical pinning potential $\\lambda_w= \\log (\\frac{1}{1-e^{-4\\beta}})$. At $\\lambda<\\lambda_w$ entropic repulsion causes the surface to delocalize and be rigid at height $\\frac1{4\\beta}\\log n+O(1)$; at $\\lambda>\\lambda_w$ it is localized at some $O(1)$ height. We show that at $\\lambda=\\lambda_w$, there is delocalization, with rigidity now at height $\\lfloor \\frac1{6\\beta}\\log n+\\frac13\\rfloor$, confirming a conjecture of Lacoin.", "revisions": [ { "version": "v1", "updated": "2024-06-17T19:19:50.000Z" } ], "analyses": { "subjects": [ "60K35", "82B20", "82B27" ], "keywords": [ "solid-on-solid model", "critical wetting", "entropic repulsion", "hard floor", "low temperature" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }