{ "id": "2406.11532", "version": "v1", "published": "2024-06-17T13:36:25.000Z", "updated": "2024-06-17T13:36:25.000Z", "title": "Global well-posedness, scattering and blow-up for the energy-critical, Schrödinger equation with general nonlinearity in the radial case", "authors": [ "Jun Wang", "Zhaoyang Yin" ], "comment": "46. arXiv admin note: substantial text overlap with arXiv:math/0610266 by other authors", "categories": [ "math.AP" ], "abstract": "In this paper, we study the well-posedness theory and the scattering asymptotics for the energy-critical, Schr\\\"odinger equation with general nonlinearity \\begin{equation*} \\left\\{\\begin{array}{l} i \\partial_t u+\\Delta u + f(u)=0,\\ (x, t) \\in \\mathbb{R}^N \\times \\mathbb{R}, \\\\ \\left.u\\right|_{t=0}=u_0 \\in H ^1(\\mathbb{R}^N), \\end{array}\\right. \\end{equation*} where $f:\\mathbb{C}\\rightarrow \\mathbb{C}$ satisfies Sobolev critical growth condition. Using contraction mapping method and concentration compactness argument, we obtain the well-posedness theory in proper function spaces and scattering asymptotics. This paper generalizes the conclusions in \\cite{KCEMF2006}(Invent. Math).", "revisions": [ { "version": "v1", "updated": "2024-06-17T13:36:25.000Z" } ], "analyses": { "keywords": [ "general nonlinearity", "radial case", "schrödinger equation", "global well-posedness", "well-posedness theory" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }