{ "id": "2406.08932", "version": "v1", "published": "2024-06-13T09:02:08.000Z", "updated": "2024-06-13T09:02:08.000Z", "title": "Inequalities for 1/(1-cos(x)) and its derivatives", "authors": [ "Horst Alzer", "Henrik L. Pedersen" ], "comment": "8 pages", "categories": [ "math.CA" ], "abstract": "We prove that the function $g(x)= 1 / \\bigl( 1 - \\cos(x) \\bigr)$ is completely monotonic on $(0,\\pi]$ and absolutely monotonic on $[\\pi, 2\\pi)$, and we determine the best possible bounds $\\lambda_n$ and $\\mu_n$ such that the inequalities $$ \\lambda_n \\leq g^{(n)}(x)+g^{(n)}(y)-g^{(n)}(x+y) \\quad (n \\geq 0 \\,\\,\\, \\mbox{even}) $$ and $$ \\mu_n \\leq g^{(n)}(x+y)-g^{(n)}(x)-g^{(n)}(y) \\quad (n \\geq 1 \\,\\,\\, \\mbox{odd}) $$ hold for all $x,y\\in (0,\\pi)$ with $x+y\\leq \\pi$.", "revisions": [ { "version": "v1", "updated": "2024-06-13T09:02:08.000Z" } ], "analyses": { "subjects": [ "26A48", "26D05", "11B68" ], "keywords": [ "inequalities", "derivatives" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }