{ "id": "2406.07995", "version": "v1", "published": "2024-06-12T08:41:19.000Z", "updated": "2024-06-12T08:41:19.000Z", "title": "Fine Boundary Regularity For The Fractional (p,q)-Laplacian", "authors": [ "R. Dhanya", "Ritabrata Jana", "Uttam Kumar", "Sweta Tiwari" ], "comment": "1 figure, Any comments/criticisms/suggestions are welcome", "categories": [ "math.AP" ], "abstract": "In this article, we deal with the fine boundary regularity, a weighted H\\\"{o}lder regularity of weak solutions to the problem involving the fractional $(p,q)$-Laplacian denoted by \\begin{eqnarray*} \\begin{array}{rll} (-\\Delta)_{p}^{s} u + (-\\Delta)_{q}^{s} u &= f(x) &\\text{ in } \\Omega u&=0 &\\text{ in } \\mathbb{R}^N\\setminus\\Omega; \\end{array} \\end{eqnarray*} where $\\Omega$ is a $C^{1,1}$ bounded domain and $2 \\leq p \\leq q <\\infty.$ For $0