{ "id": "2406.07718", "version": "v1", "published": "2024-06-11T20:57:24.000Z", "updated": "2024-06-11T20:57:24.000Z", "title": "Non-spherical sets versus lines in Euclidean Ramsey theory", "authors": [ "David Conlon", "Jakob Führer" ], "categories": [ "math.CO" ], "abstract": "We show that for every non-spherical set $X$ in $\\mathbb{E}^d$, there exists a natural number $m$ and a red/blue-colouring of $\\mathbb{E}^n$ for every $n$ such that there is no red copy of X and no blue progression of length $m$ with each consecutive point at distance $1$. This verifies a conjecture of Wu and the first author.", "revisions": [ { "version": "v1", "updated": "2024-06-11T20:57:24.000Z" } ], "analyses": { "subjects": [ "05D10", "52C10" ], "keywords": [ "euclidean ramsey theory", "non-spherical set", "natural number", "blue progression", "first author" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }