{ "id": "2406.06933", "version": "v1", "published": "2024-06-11T04:15:13.000Z", "updated": "2024-06-11T04:15:13.000Z", "title": "Equivariant vector bundles on toric schemes over semirings", "authors": [ "Jaiung Jun", "Kalina Mincheva", "Jeffrey Tolliver" ], "categories": [ "math.AG" ], "abstract": "We introduce a notion of equivariant vector bundles on schemes over semirings. We do this by considering the functor of points of a locally free sheaf. We prove that every toric vector bundle on a toric scheme $X$ over an idempotent semifield equivariantly splits as a sum of toric line bundles. We then study the equivariant Picard group $\\text{Pic}_G(X)$. Finally, we prove a version of Klyachko's classification theorem for toric vector bundles over an idempotent semifield.", "revisions": [ { "version": "v1", "updated": "2024-06-11T04:15:13.000Z" } ], "analyses": { "subjects": [ "14A23", "14T10", "14C22" ], "keywords": [ "equivariant vector bundles", "toric scheme", "toric vector bundle", "idempotent semifield equivariantly splits", "klyachkos classification theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }