{ "id": "2406.06876", "version": "v1", "published": "2024-06-11T01:37:07.000Z", "updated": "2024-06-11T01:37:07.000Z", "title": "Boundedness for maximal operators over hypersurfaces in $\\mathbb{R}^3$", "authors": [ "Wenjuan Li", "Huiju Wang" ], "categories": [ "math.CA" ], "abstract": "In this article, we study maximal functions related to hypersurfaces with vanishing Gaussian curvature in $\\mathbb{R}^3$. Firstly, we characterize the $L^p\\rightarrow L^q$ boundedness of local maximal operators along homogeneous hypersurfaces. Moreover, weighted $L^p$-estimates are obtained for the corresponding global operators. Secondly, for a class of hypersurfaces that lack a homogeneous structure and pass through the origin, we attempt to look for other geometric properties instead of height of hypersurfaces to characterize the optimal $L^p$-boundedness of the corresponding global maximal operators.", "revisions": [ { "version": "v1", "updated": "2024-06-11T01:37:07.000Z" } ], "analyses": { "subjects": [ "42B20", "42B25" ], "keywords": [ "boundedness", "corresponding global maximal operators", "local maximal operators", "study maximal functions", "vanishing gaussian curvature" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }