{ "id": "2406.06008", "version": "v1", "published": "2024-06-10T04:08:17.000Z", "updated": "2024-06-10T04:08:17.000Z", "title": "Efficient algorithm for the oscillatory matrix functions", "authors": [ "Dongping Li", "Xue Wang", "Xiuying Zhang" ], "comment": "12 pages", "categories": [ "math.NA", "cs.NA" ], "abstract": "This paper introduces an efficient algorithm for computing the general oscillatory matrix functions. These computations are crucial for solving second-order semi-linear initial value problems. The method is exploited using the scaling and restoring technique based on a quadruple angle formula in conjunction with a truncated Taylor series. The choice of the scaling parameter and the degree of the Taylor polynomial relies on a forward error analysis. Numerical experiments show that the new algorithm behaves in a stable fashion and performs well in both accuracy and efficiency.", "revisions": [ { "version": "v1", "updated": "2024-06-10T04:08:17.000Z" } ], "analyses": { "subjects": [ "65F30", "65F60", "G.1.3" ], "keywords": [ "efficient algorithm", "second-order semi-linear initial value problems", "solving second-order semi-linear initial value", "general oscillatory matrix functions", "quadruple angle formula" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }