{ "id": "2406.05840", "version": "v1", "published": "2024-06-09T16:01:45.000Z", "updated": "2024-06-09T16:01:45.000Z", "title": "Almost $t$-intersecting families for vector spaces", "authors": [ "Dehai Liu", "Kaishun Wang", "Tian Yao" ], "categories": [ "math.CO" ], "abstract": "Let $V$ be a finite dimensional vector space over a finite field. A family $\\mathcal{F}$ consisting of $k$-subspcaes of $V$ is called almost $t$-intersecting if for each $F\\in \\mathcal{F}$ there is at most one $F^{\\prime}\\in \\mathcal{F}$ with $\\dim(F\\cap F^{\\prime})\\leq t-1$. In this paper, we determine the maximum value and the extremal structure of almost $t$-intersecting families. We also solve the same problems for almost $t$-intersecting families but not $t$-intersecting.", "revisions": [ { "version": "v1", "updated": "2024-06-09T16:01:45.000Z" } ], "analyses": { "subjects": [ "05D05", "05A30" ], "keywords": [ "intersecting families", "finite dimensional vector space", "finite field", "extremal structure", "maximum value" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }