{ "id": "2406.04045", "version": "v1", "published": "2024-06-06T13:15:07.000Z", "updated": "2024-06-06T13:15:07.000Z", "title": "On the Diameter of Undirected Cayley Graphs of Finite Abelian Groups", "authors": [ "Bela Bajnok", "W. Kyle Beatty" ], "categories": [ "math.CO", "math.GR", "math.NT" ], "abstract": "Let $s$ be a positive integer. Our goal is to find all finite abelian groups $G$ that contain a $2$-subset $A$ for which the undirected Cayley graph $\\Gamma(G,A)$ has diameter at most $s$. We provide a complete answer when $G$ is cyclic, and a conjecture and some partial answers when $G$ is noncyclic.", "revisions": [ { "version": "v1", "updated": "2024-06-06T13:15:07.000Z" } ], "analyses": { "subjects": [ "11B13" ], "keywords": [ "finite abelian groups", "undirected cayley graph", "complete answer", "partial answers", "conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }