{ "id": "2406.03370", "version": "v1", "published": "2024-06-05T15:24:44.000Z", "updated": "2024-06-05T15:24:44.000Z", "title": "A representation embedding for algebras of infinite type", "authors": [ "Raymundo Bautista Ramos", "Jesús Efrén Pérez Terrazas", "Leonardo Salmerón Castro" ], "categories": [ "math.RT" ], "abstract": "We show that for any finite-dimensional algebra $\\Lambda$ of infinite representation type, over a perfect field, there is a bounded principal ideal domain $\\Gamma$ and a representation embedding from $\\Gamma -$mod into $\\Lambda -$mod. As an application, we prove a variation of the Brauer-Trall Conjecture II: finite-dimensional algebras of infinite-representation type admit infinite families of non-isomorphic finite-dimensional indecomposables with fixed endolength, for infinitely many endolengths.", "revisions": [ { "version": "v1", "updated": "2024-06-05T15:24:44.000Z" } ], "analyses": { "subjects": [ "16G60", "16G20" ], "keywords": [ "infinite type", "representation embedding", "infinite-representation type admit infinite families", "finite-dimensional algebra", "bounded principal ideal domain" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }