{ "id": "2406.02988", "version": "v1", "published": "2024-06-05T06:38:10.000Z", "updated": "2024-06-05T06:38:10.000Z", "title": "Collapse of the Gibbs measure for the dynamical $Φ^3_2$-models on the infinite volume", "authors": [ "Kihoon Seong", "Philippe Sosoe" ], "comment": "47 pages", "categories": [ "math.PR", "math-ph", "math.AP", "math.MP" ], "abstract": "We study the $\\Phi^3_2$-measure in the infinite volume limit. This is the invariant measure for several stochastic partial differential equations including the parabolic and hyperbolic $\\Phi^3_2$-models. In the large torus limit, we observe a concentration phenomenon of the $\\Phi^3_2$-measure around zero, which is the single minimizer of the corresponding Hamiltonian for any fixed torus size. From our sharp estimates for the partition function, we obtain a triviality result for the $\\Phi^3_2$-measure on infinite volume: the ensemble collapses onto a delta function on the zero field.", "revisions": [ { "version": "v1", "updated": "2024-06-05T06:38:10.000Z" } ], "analyses": { "keywords": [ "gibbs measure", "stochastic partial differential equations", "infinite volume limit", "large torus limit", "delta function" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable" } } }