{ "id": "2406.02519", "version": "v1", "published": "2024-06-04T17:40:03.000Z", "updated": "2024-06-04T17:40:03.000Z", "title": "The space of immersed polygons", "authors": [ "Maxime Fortier Bourque" ], "comment": "7 pages, 2 figures", "categories": [ "math.GT" ], "abstract": "We use the Schwarz--Christoffel formula to show that for every $n\\geq 3$, the space of labelled immersed $n$-gons in the plane up to similarity is homeomorphic to $\\mathbb{R}^{2n-4}$. It follows that the space of labelled simple $n$-gons up to similarity is homeomorphic to $\\mathbb{R}^{2n-4}$ if $n\\in \\{3,4,5\\}$, which confirms one more case of a conjecture of Gonz\\'alez and Sedano-Mendoza.", "revisions": [ { "version": "v1", "updated": "2024-06-04T17:40:03.000Z" } ], "analyses": { "keywords": [ "immersed polygons", "homeomorphic", "schwarz-christoffel formula", "similarity" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }