{ "id": "2406.00840", "version": "v1", "published": "2024-06-02T19:22:48.000Z", "updated": "2024-06-02T19:22:48.000Z", "title": "Improved upper bounds on Diophantine tuples with the property $D(n)$", "authors": [ "Chi Hoi Yip" ], "comment": "short notes, 4 pages", "categories": [ "math.NT" ], "abstract": "Let $n$ be a non-zero integer. A set $S$ of positive integers is a Diophantine tuple with the property $D(n)$ if $ab+n$ is a perfect square for each $a,b \\in S$ with $a \\neq b$. It is of special interest to estimate the quantity $M_n$, the maximum size of a Diophantine tuple with the property $D(n)$. In this notes, we show the contribution of intermediate elements is $O(\\log \\log |n|)$, improving a result by Dujella. As a consequence, we deduce that $M_n\\leq (2+o(1))\\log |n|$, improving the best-known upper bound on $M_n$ by Becker and Murty.", "revisions": [ { "version": "v1", "updated": "2024-06-02T19:22:48.000Z" } ], "analyses": { "subjects": [ "11D09", "11D45" ], "keywords": [ "diophantine tuple", "best-known upper bound", "perfect square", "intermediate elements", "non-zero integer" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }