{ "id": "2406.00797", "version": "v1", "published": "2024-06-02T16:43:20.000Z", "updated": "2024-06-02T16:43:20.000Z", "title": "Infinite class field tower with small root discriminant", "authors": [ "Zugan Xing", "Qi Liu" ], "comment": "7 pages", "categories": [ "math.NT" ], "abstract": "We extend Schoof's theorem from cyclic case to any finite case and apply this to construct a class of $\\mathbb Z/m\\mathbb Z \\rtimes \\mathbb Z/\\varphi(n)\\mathbb Z$ extensions of $\\mathbb Q$, where $m$ is either a power of $2$ or an odd integer, and $n$ be any integer such that $m$ divides $n$. As an application, we give some number fields with small root discriminant, having infinite $p$-class field tower when $p=3, 5, 7$.", "revisions": [ { "version": "v1", "updated": "2024-06-02T16:43:20.000Z" } ], "analyses": { "subjects": [ "11R29", "11R37" ], "keywords": [ "infinite class field tower", "small root discriminant", "extend schoofs theorem", "number fields", "odd integer" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }