{ "id": "2406.00243", "version": "v1", "published": "2024-06-01T00:21:04.000Z", "updated": "2024-06-01T00:21:04.000Z", "title": "There are no good infinite families of toric codes", "authors": [ "Jason P. Bell", "Sean Monahan", "Matthew Satriano", "Karen Situ", "Zheng Xie" ], "comment": "10 pages. Comments welcome", "categories": [ "math.CO", "cs.IT", "math.AG", "math.IT" ], "abstract": "Soprunov and Soprunova introduced the notion of a good infinite family of toric codes. We prove that such good families do not exist by proving a more general Szemer\\'edi-type result: for all $c\\in(0,1]$ and all positive integers $N$, subsets of density at least $c$ in $\\{0,1,\\dots,N-1\\}^n$ contain hypercubes of arbitrarily large dimension as $n$ grows.", "revisions": [ { "version": "v1", "updated": "2024-06-01T00:21:04.000Z" } ], "analyses": { "subjects": [ "14G50", "14M25", "11B30", "94B05" ], "keywords": [ "toric codes", "infinite family", "general szemeredi-type result", "contain hypercubes", "arbitrarily large dimension" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }