{ "id": "2405.20571", "version": "v1", "published": "2024-05-31T01:53:04.000Z", "updated": "2024-05-31T01:53:04.000Z", "title": "On the principal eigenvalue for compound Poisson processes", "authors": [ "Daesung Kim", "Hyunchul Park" ], "categories": [ "math.PR" ], "abstract": "We investigate the explicit expression for the principal eigenvalue $\\lambda_{1}^{X}(D)$ for a large class of compound Poisson processes $X$ on a bounded open set $D$ by examining its spectral heat content. When the jump density of the compound Poisson process is radially symmetric and strictly decreasing, we demonstrate that balls are the unique minimizers for $\\lambda_{1}^{X}(D)$ among all sets with equal Lebesgue measure. Furthermore, we show that this uniqueness fails if the jump density is not strictly decreasing.", "revisions": [ { "version": "v1", "updated": "2024-05-31T01:53:04.000Z" } ], "analyses": { "subjects": [ "60J76" ], "keywords": [ "compound poisson process", "principal eigenvalue", "jump density", "spectral heat content", "equal lebesgue measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }