{ "id": "2405.20177", "version": "v1", "published": "2024-05-30T15:45:40.000Z", "updated": "2024-05-30T15:45:40.000Z", "title": "On the nested algebraic Bethe ansatz for spin chains with simple $\\mathfrak{g}$-symmetry", "authors": [ "Allan John Gerrard" ], "categories": [ "math-ph", "hep-th", "math.MP", "math.QA", "nlin.SI" ], "abstract": "We propose a new framework for the nested algebraic Bethe ansatz for a closed, rational spin chain with $\\mathfrak{g}$-symmetry for any simple Lie algebra $\\mathfrak{g}$. Starting the nesting process by removing a single simple root from $\\mathfrak{g}$, we use the residual $U(1)$ charge and the block Gauss decomposition of the $R$-matrix to derive many standard results in the Bethe ansatz, such as the nesting of Yangian algebras, and the AB commutation relation.", "revisions": [ { "version": "v1", "updated": "2024-05-30T15:45:40.000Z" } ], "analyses": { "keywords": [ "nested algebraic bethe ansatz", "simple lie algebra", "rational spin chain", "single simple root", "block gauss decomposition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }