{ "id": "2405.19382", "version": "v1", "published": "2024-05-29T05:04:15.000Z", "updated": "2024-05-29T05:04:15.000Z", "title": "Decoupling and Multipoint moments for the Inverse of the Gaussian multiplicative chaos", "authors": [ "Ilia Binder", "Tomas Kojar" ], "comment": "arXiv admin note: substantial text overlap with arXiv:2305.00360", "categories": [ "math.PR" ], "abstract": "In this article we study the decoupling structure and multipoint moment of the inverse of the Gaussian multiplicative chaos. It is also the second part of preliminary work for extending the work in \"Random conformal weldings\" (by K. Astala, P. Jones, A. Kupiainen, E. Saksman) to the existence of Lehto welding for the inverse. In particular, we prove that the dilatation of the inverse homeomorphism on the positive real line is in $L^{1}([0,1]\\times[0,2])$.", "revisions": [ { "version": "v1", "updated": "2024-05-29T05:04:15.000Z" } ], "analyses": { "keywords": [ "gaussian multiplicative chaos", "multipoint moment", "random conformal weldings", "decoupling", "positive real line" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }