{ "id": "2405.19123", "version": "v1", "published": "2024-05-29T14:30:06.000Z", "updated": "2024-05-29T14:30:06.000Z", "title": "Torus diffeomorphisms with parabolic and non-proper actions on the fine curve graph and their generalized rotation sets", "authors": [ "Nastaran Einabadi" ], "comment": "26 pages, 8 figures", "categories": [ "math.DS", "math.GR", "math.GT" ], "abstract": "We prove that a generic element of the Anosov-Katok class of the torus, $\\overline{\\mathcal{O}}^{\\infty}(\\mathbb{T}^2)$, acts parabolically and non-properly on the fine curve graph $C^{\\dagger}(\\mathbb{T}^2)$. Additionally, we show that a generic element of $\\overline{\\mathcal{O}}^{\\infty}(\\mathbb{T}^2)$ admits generalized rotation sets of any point-symmetric compact convex homothety type in the plane.", "revisions": [ { "version": "v1", "updated": "2024-05-29T14:30:06.000Z" } ], "analyses": { "keywords": [ "fine curve graph", "generalized rotation sets", "torus diffeomorphisms", "non-proper actions", "point-symmetric compact convex homothety type" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }