{ "id": "2405.18557", "version": "v1", "published": "2024-05-28T20:04:28.000Z", "updated": "2024-05-28T20:04:28.000Z", "title": "Skein modules and character varieties of Seifert manifolds", "authors": [ "Renaud Detcherry", "Efstratia Kalfagianni", "Adam S. Sikora" ], "comment": "28 pages", "categories": [ "math.GT", "math.QA", "math.RT" ], "abstract": "We show that the Kauffman bracket skein module of a closed Seifert fibered 3-manifold $M$ is finitely generated over $\\mathbb Z[A^{\\pm 1}]$ if and only if $M$ is irreducible and non-Haken. We analyze in detail the character varieties $X(M)$ of such manifolds and show that under mild conditions they are reduced. We compute the Kauffman bracket skein modules for these $3$-manifolds (over $\\mathbb Q(A)$) and show that their dimensions coincide with $|X(M)|.$", "revisions": [ { "version": "v1", "updated": "2024-05-28T20:04:28.000Z" } ], "analyses": { "subjects": [ "57K31", "57K16" ], "keywords": [ "character varieties", "kauffman bracket skein module", "seifert manifolds", "mild conditions", "dimensions coincide" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }