{ "id": "2405.18409", "version": "v1", "published": "2024-05-28T17:51:04.000Z", "updated": "2024-05-28T17:51:04.000Z", "title": "Sections of Submonoids of Nilpotent Groups", "authors": [ "Doron Shafrir" ], "categories": [ "math.GR", "cs.FL" ], "abstract": "We show that every product of f.g.\\ submonoids of a group $G$ is a section of a f.g.\\ submonoid of $G{\\times}H_5(\\mathbb{Z})$, where $H_5(\\mathbb{Z})$ is a Heisenberg group. This gives us a converse of a reduction of Bodart, and a new simple proof of the existence of a submonoid of a nilpotent group of class 2 with undecidable membership problem.", "revisions": [ { "version": "v1", "updated": "2024-05-28T17:51:04.000Z" } ], "analyses": { "keywords": [ "nilpotent group", "heisenberg group", "simple proof", "undecidable membership problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }