{ "id": "2405.17981", "version": "v1", "published": "2024-05-28T09:13:12.000Z", "updated": "2024-05-28T09:13:12.000Z", "title": "Explicit formulae for the mean value of products of values of Dirichlet $L$-functions at positive integers", "authors": [ "Stéphane Louboutin" ], "categories": [ "math.NT" ], "abstract": "Let $m\\ge 1$ be a rational integer. We give an explicit formula for the mean value $$\\frac{2}{\\phi(f)}\\sum_{\\chi (-1)=(-1)^m}\\vert L(m,\\chi )\\vert^2,$$ where $\\chi$ ranges over the $\\phi (f)/2$ Dirichlet characters modulo $f>2$ with the same parity as $m$. We then adapt our proof to obtain explicit means values for products of the form $L(m_1,\\chi_1)\\cdots L(m_{n-1},\\chi_{n-1})\\overline{L(m_n,\\chi_1\\cdots\\chi_{n-1})}$.", "revisions": [ { "version": "v1", "updated": "2024-05-28T09:13:12.000Z" } ], "analyses": { "keywords": [ "mean value", "explicit formula", "positive integers", "dirichlet characters modulo", "explicit means values" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }