{ "id": "2405.15378", "version": "v1", "published": "2024-05-24T09:23:57.000Z", "updated": "2024-05-24T09:23:57.000Z", "title": "Dominating surface-group representations via Fock-Goncharov coordinates", "authors": [ "Pabitra Barman", "Subhojoy Gupta" ], "comment": "39 pages", "categories": [ "math.GT" ], "abstract": "Let $S$ be a punctured surface of negative Euler characteristic. We show that given a generic representation $\\rho:\\pi_1(S) \\rightarrow \\mathrm{PSL}_n(\\mathbb{C})$, there exists a positive representation $\\rho_0:\\pi_1(S) \\rightarrow \\mathrm{PSL}_n(\\mathbb{R})$ that dominates $\\rho$ in the Hilbert length spectrum as well as in the translation length spectrum, for the translation length in the symmetric space $\\mathbb{X}_n= \\mathrm{PSL}_n(\\mathbb{C})/\\mathrm{PSU}(n)$. Moreover, the $\\rho_0$-lengths of peripheral curves remain unchanged. The dominating representation $\\rho_0$ is explicitly described via Fock-Goncharov coordinates. Our methods are linear-algebraic, and involve weight matrices of weighted planar networks.", "revisions": [ { "version": "v1", "updated": "2024-05-24T09:23:57.000Z" } ], "analyses": { "keywords": [ "dominating surface-group representations", "fock-goncharov coordinates", "peripheral curves remain", "translation length spectrum", "hilbert length spectrum" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable" } } }