{ "id": "2405.12210", "version": "v1", "published": "2024-05-20T17:55:53.000Z", "updated": "2024-05-20T17:55:53.000Z", "title": "Blow-up solutions of the \"bad\" Boussinesq equation", "authors": [ "Christophe Charlier" ], "comment": "31 pages, 1 figure", "categories": [ "math.AP" ], "abstract": "We study blow-up solutions of the ``bad\" Boussinesq equation, and prove that a wide range of asymptotic scenarios can happen. For example, for each $T>0$, $x_{0}\\in \\mathbb{R}$ and $\\delta \\in (0,1)$, we prove that there exist Schwartz class solutions $u(x,t)$ on $\\mathbb{R} \\times [0,T)$ such that $|u(x,t)| \\leq C \\frac{1+x^{2}}{(x-x_{0})^{2}}$ and $u(x_{0},t)\\asymp (T-t)^{-\\delta}$ as $t\\to T$. We also prove that for any $q\\in \\mathbb{N}$, $T>0$, $x_{0}\\in \\mathbb{R}$, $\\delta \\in (0,\\frac{1}{2})$, there exist Schwartz class solutions $u(x,t)$ on $\\mathbb{R} \\times [0,T)$ such that (i) $|\\partial_{x}^{q_{1}}\\partial_{t}^{q_{2}}u(x,t)|\\leq C$ for each $q_{1},q_{2}\\in \\mathbb{N}$ such that $q_{1}+2q_{2}\\leq q$, (ii) $|\\partial_{x}^{q_{1}}\\partial_{t}^{q_{2}}u(x,t)| \\leq C \\frac{1+|x|}{|x-x_{0}|}$ for each $q_{1},q_{2}\\in \\mathbb{N}$ such that $q_{1}+2q_{2}= q+1$, (iii) $|\\partial_{x}^{q_{1}}\\partial_{t}^{q_{2}}u(x_{0},t)| \\asymp (T-t)^{-\\delta}$ as $t\\to T$ for each $q_{1},q_{2}\\in \\mathbb{N}$ such that $q_{1}+2q_{2}= q+1$. In particular, when $q=0$, this result establishes the existence of wave-breaking solutions, i.e. solutions that remain bounded but whose $x$-derivative blows up in finite time.", "revisions": [ { "version": "v1", "updated": "2024-05-20T17:55:53.000Z" } ], "analyses": { "keywords": [ "boussinesq equation", "schwartz class solutions", "study blow-up solutions", "wide range", "finite time" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }