{ "id": "2405.11925", "version": "v1", "published": "2024-05-20T10:03:26.000Z", "updated": "2024-05-20T10:03:26.000Z", "title": "The Dirichlet problem for Monge-Ampère type equations on Riemannian manifolds", "authors": [ "Weisong Dong", "Jinling Niu", "Nadilamu Nizhamuding" ], "categories": [ "math.AP" ], "abstract": "In this paper, we study the Dirichlet problem for Monge-Amp\\`ere type equations for $p$-plurisubharmonic functions on Riemannian manifolds. The $a$ $priori$ estimates up to the second order derivatives of solutions are established. The existence of a solution then follows by the continuity method.", "revisions": [ { "version": "v1", "updated": "2024-05-20T10:03:26.000Z" } ], "analyses": { "subjects": [ "35J15", "35B45" ], "keywords": [ "monge-ampère type equations", "riemannian manifolds", "dirichlet problem", "second order derivatives", "plurisubharmonic functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }