{ "id": "2405.10888", "version": "v1", "published": "2024-05-17T16:25:44.000Z", "updated": "2024-05-17T16:25:44.000Z", "title": "The fourth moment of the Hurwitz zeta function", "authors": [ "Winston Heap", "Anurag Sahay" ], "comment": "34 pages", "categories": [ "math.NT" ], "abstract": "We prove a sharp upper bound for the fourth moment of the Hurwitz zeta function $\\zeta(s,\\alpha)$ on the critical line when the shift parameter $\\alpha$ is irrational and of irrationality exponent strictly less than 3. As a consequence, we determine the order of magnitude of the $2k$th moment for all $0 \\leqslant k \\leqslant 2$ in this case. In contrast to the Riemann zeta function and other $L$-functions from arithmetic, these grow like $T (\\log T)^k$. This suggests, and we conjecture, that the value distribution of $\\zeta(s,\\alpha)$ on the critical line is Gaussian.", "revisions": [ { "version": "v1", "updated": "2024-05-17T16:25:44.000Z" } ], "analyses": { "keywords": [ "hurwitz zeta function", "fourth moment", "critical line", "sharp upper bound", "riemann zeta function" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }