{ "id": "2405.10179", "version": "v1", "published": "2024-05-16T15:21:47.000Z", "updated": "2024-05-16T15:21:47.000Z", "title": "Conditions on the continuity of the Hausdorff measure", "authors": [ "RafaƂ Tryniecki" ], "comment": "25 pages, 3 figures", "categories": [ "math.DS" ], "abstract": "Let $b_k$ be strictly decreasing sequence of real numbers such that $b_0 = 1$ and $f_k$ be decreasing, linear functions such that $f_k(b_k) = 1$ and $f_k(b_{k-1}) = 0$, $k = 1, 2, \\dots$. We define iterated function system (IFS) $S_n$ by limiting the collection of functions $f_k$ to first n, meaning $S_n = \\{f_k \\}_{k=1}^n$. Let $J_n$ denote the limit set of $S_n$. We show that if $S_n$ fulfills the following two conditions: (1)~$\\lim\\limits_{n \\to \\infty} \\left(1-h_n\\right) \\ln{n} = 0 $ where $h_n$ is the Hausdorff dimension of $J_n$, and (2)~$\\sup \\limits_{k\\in \\mathbb{N}} \\left \\{\\frac{b_k-b_{k+1}}{b_{k+1}} \\right \\} < \\infty $, then $\\lim\\limits_{n\\to \\infty} H_{h_n}(J_n) = 1 = H_1(J)$, where $h_n$ is the Hausdorff dimension of $J_n$ and $H_{h_n}$ is the corresponding Hausdorff measure. We also show examples of families of IFSes fulfilling those properties.", "revisions": [ { "version": "v1", "updated": "2024-05-16T15:21:47.000Z" } ], "analyses": { "subjects": [ "37E05" ], "keywords": [ "conditions", "hausdorff dimension", "continuity", "define iterated function system", "corresponding hausdorff measure" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }