{ "id": "2405.10178", "version": "v1", "published": "2024-05-16T15:19:49.000Z", "updated": "2024-05-16T15:19:49.000Z", "title": "Infinite Divisibility of the Product of Two Correlated Normal Random Variables and Exact Distribution of the Sample Mean", "authors": [ "Robert E. Gaunt", "Saralees Nadarajah", "Tibor K. Pogány" ], "comment": "15 pages", "categories": [ "math.PR" ], "abstract": "We prove that the distribution of the product of two correlated normal random variables with non-zero means and arbitrary variances is infinitely divisible. We also obtain exact formulas for the probability density function of the sum of independent copies of such random variables.", "revisions": [ { "version": "v1", "updated": "2024-05-16T15:19:49.000Z" } ], "analyses": { "subjects": [ "60E05", "60E07", "62E15", "33C15", "60E10" ], "keywords": [ "correlated normal random variables", "sample mean", "exact distribution", "infinite divisibility", "probability density function" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }