{ "id": "2405.09750", "version": "v1", "published": "2024-05-16T01:20:04.000Z", "updated": "2024-05-16T01:20:04.000Z", "title": "Scalar curvature lower bounds on asymptotically flat manifolds", "authors": [ "Yuqiao Li" ], "categories": [ "math.DG" ], "abstract": "In this paper, we consider the scalar curvature in the distributional sense of \\cite{MR3366052} and the scalar curvature lower bound in the $\\beta-$weak $(\\beta\\in(0, \\frac{1}{2}))$ sense of \\cite{MR4685089} on an asymptotically flat $n-$manifold with a $W^{1,p}(p>n)$ metric. We first show that the scalar curvature lower bound under the Ricci-DeTurck flow depends on the scalar curvature lower bound in the $\\beta-$weak sense and the time. Then we prove that the lower bound of the distributional scalar curvature of a $W^{1, p}$ metric coincides with the lower bound of the scalar curvature in the $\\beta-$weak sense at infinity.", "revisions": [ { "version": "v1", "updated": "2024-05-16T01:20:04.000Z" } ], "analyses": { "keywords": [ "scalar curvature lower bound", "asymptotically flat manifolds", "weak sense", "distributional scalar curvature", "ricci-deturck flow" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }