{ "id": "2405.09540", "version": "v1", "published": "2024-05-15T17:53:32.000Z", "updated": "2024-05-15T17:53:32.000Z", "title": "Singular parabolic operators in the half-space with boundary degeneracy: Dirichlet and oblique derivative boundary conditions", "authors": [ "Luigi Negro" ], "categories": [ "math.AP" ], "abstract": "We study elliptic and parabolic problems governed by the singular elliptic operators $$ \\mathcal L=y^{\\alpha_1}\\mbox{Tr }\\left(QD^2_x\\right)+2y^{\\frac{\\alpha_1+\\alpha_2}{2}}q\\cdot \\nabla_xD_y+\\gamma y^{\\alpha_2} D_{yy}+y^{\\frac{\\alpha_1+\\alpha_2}{2}-1}\\left(d,\\nabla_x\\right)+cy^{\\alpha_2-1}D_y-by^{\\alpha_2-2}$$ in the half-space $\\mathcal{R}^{N+1}_+=\\{(x,y): x \\in \\mathcal{R}^N, y>0\\}$, under Dirichlet or oblique derivative boundary conditions. In the special case $\\alpha_1=\\alpha_2=\\alpha$ the operator $\\mathcal L$ takes the form $$ \\mathcal L=y^{\\alpha}\\mbox{Tr }\\left(AD^2\\right)+y^{\\alpha-1}\\left(v,\\nabla\\right)-by^{\\alpha-2},$$ where $v=(d,c)\\in\\mathcal{R}^{N+1}$, $b\\in\\mathcal{R}$ and $ A=\\left( \\begin{array}{c|c} Q & { q}^t \\\\[1ex] \\hline q& \\gamma \\end{array}\\right)$ is an elliptic matrix. We prove elliptic and parabolic $L^p$-estimates and solvability for the associated problems. In the language of semigroup theory, we prove that $\\mathcal L$ generates an analytic semigroup, characterize its domain as a weighted Sobolev space and show that it has maximal regularity.", "revisions": [ { "version": "v1", "updated": "2024-05-15T17:53:32.000Z" } ], "analyses": { "subjects": [ "35K67", "35B45", "47D07", "35J70", "35J75" ], "keywords": [ "oblique derivative boundary conditions", "singular parabolic operators", "boundary degeneracy", "half-space", "singular elliptic operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }