{ "id": "2405.09295", "version": "v1", "published": "2024-05-15T12:36:18.000Z", "updated": "2024-05-15T12:36:18.000Z", "title": "Cables of the figure-eight knot via real Frøyshov invariants", "authors": [ "Sungkyung Kang", "JungHwan Park", "Masaki Taniguchi" ], "comment": "31 pages, 1 figure", "categories": [ "math.GT" ], "abstract": "We prove that the $(2n,1)$-cable of the figure-eight knot is not smoothly slice when $n$ is odd, by using the real Seiberg-Witten Fr{\\o}yshov invariant of Konno-Miyazawa-Taniguchi. For the computation, we develop an $O(2)$-equivariant version of the lattice homotopy type, originally introduced by Dai-Sasahira-Stoffregen. This enables us to compute the real Seiberg-Witten Floer homotopy type for a certain class of knots. Additionally, we present some computations of Miyazawa's real framed Seiberg-Witten invariant for 2-knots.", "revisions": [ { "version": "v1", "updated": "2024-05-15T12:36:18.000Z" } ], "analyses": { "subjects": [ "57K10", "57K41" ], "keywords": [ "real frøyshov invariants", "figure-eight knot", "real seiberg-witten floer homotopy type", "miyazawas real framed seiberg-witten invariant", "lattice homotopy type" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }