{ "id": "2405.08258", "version": "v1", "published": "2024-05-14T01:12:48.000Z", "updated": "2024-05-14T01:12:48.000Z", "title": "On special properties of solutions to Camassa-Holm equation and related models", "authors": [ "Christian Hong", "Felipe Linares", "Gustavo Ponce" ], "categories": [ "math.AP" ], "abstract": "We study unique continuation properties of solutions to the b-family of equations. This includes the Camassa-Holm and the Degasperi-Procesi models. We prove that for both, the initial value problem and the periodic boundary value problem, the unique continuation results found in \\cite{LiPo} are optimal. More precisely, the result established there for the constant $c_0=0$ fails for any constant $c_0\\neq 0$.", "revisions": [ { "version": "v1", "updated": "2024-05-14T01:12:48.000Z" } ], "analyses": { "subjects": [ "35Q35", "35B65", "76B15" ], "keywords": [ "camassa-holm equation", "special properties", "related models", "study unique continuation properties", "periodic boundary value problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }